\(\int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx\) [183]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 100 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=-\frac {(A-B) c \cos (e+f x)}{f (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {B c \cos (e+f x) \log (1+\sin (e+f x))}{a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

-(A-B)*c*cos(f*x+e)/f/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2)+B*c*cos(f*x+e)*ln(1+sin(f*x+e))/a/f/(a+a*s
in(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {3050, 2816, 2746, 31, 2817} \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=\frac {B c \cos (e+f x) \log (\sin (e+f x)+1)}{a f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {c (A-B) \cos (e+f x)}{f (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[((A + B*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

-(((A - B)*c*Cos[e + f*x])/(f*(a + a*Sin[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]])) + (B*c*Cos[e + f*x]*Log[1
+ Sin[e + f*x]])/(a*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2746

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 2816

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[a
*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2817

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rule 3050

Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[B/d, Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x
] - Dist[(B*c - A*d)/d, Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f
, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {B \int \frac {\sqrt {c-c \sin (e+f x)}}{\sqrt {a+a \sin (e+f x)}} \, dx}{a}-(-A+B) \int \frac {\sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx \\ & = -\frac {(A-B) c \cos (e+f x)}{f (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {(B c \cos (e+f x)) \int \frac {\cos (e+f x)}{a+a \sin (e+f x)} \, dx}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {(A-B) c \cos (e+f x)}{f (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {(B c \cos (e+f x)) \text {Subst}\left (\int \frac {1}{a+x} \, dx,x,a \sin (e+f x)\right )}{a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {(A-B) c \cos (e+f x)}{f (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {B c \cos (e+f x) \log (1+\sin (e+f x))}{a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.37 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.43 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {c-c \sin (e+f x)} \left (-A+B-i B f x+2 B \log \left (i+e^{i (e+f x)}\right )+B \left (-i f x+2 \log \left (i+e^{i (e+f x)}\right )\right ) \sin (e+f x)\right )}{f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) (a (1+\sin (e+f x)))^{3/2}} \]

[In]

Integrate[((A + B*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*Sqrt[c - c*Sin[e + f*x]]*(-A + B - I*B*f*x + 2*B*Log[I + E^(I*(e + f*x)
)] + B*((-I)*f*x + 2*Log[I + E^(I*(e + f*x))])*Sin[e + f*x]))/(f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(a*(1 +
 Sin[e + f*x]))^(3/2))

Maple [A] (verified)

Time = 2.54 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.41

method result size
default \(\frac {\sec \left (f x +e \right ) \left (2 B \sin \left (f x +e \right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-B \sin \left (f x +e \right ) \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )+A \sin \left (f x +e \right )-B \sin \left (f x +e \right )+2 B \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-B \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}{a f \sqrt {a \left (1+\sin \left (f x +e \right )\right )}}\) \(141\)
parts \(\frac {A \tan \left (f x +e \right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}{f a \sqrt {a \left (1+\sin \left (f x +e \right )\right )}}+\frac {B \sec \left (f x +e \right ) \left (2 \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right ) \sin \left (f x +e \right )-\ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right ) \sin \left (f x +e \right )+2 \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-\ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )-\sin \left (f x +e \right )\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}{f a \sqrt {a \left (1+\sin \left (f x +e \right )\right )}}\) \(169\)

[In]

int((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/a/f*sec(f*x+e)*(2*B*sin(f*x+e)*ln(-cot(f*x+e)+csc(f*x+e)+1)-B*sin(f*x+e)*ln(2/(1+cos(f*x+e)))+A*sin(f*x+e)-B
*sin(f*x+e)+2*B*ln(-cot(f*x+e)+csc(f*x+e)+1)-B*ln(2/(1+cos(f*x+e))))*(-c*(sin(f*x+e)-1))^(1/2)/(a*(1+sin(f*x+e
)))^(1/2)

Fricas [F]

\[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=\int { \frac {{\left (B \sin \left (f x + e\right ) + A\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(-(B*sin(f*x + e) + A)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(a^2*cos(f*x + e)^2 - 2*a^2*
sin(f*x + e) - 2*a^2), x)

Sympy [F]

\[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=\int \frac {\sqrt {- c \left (\sin {\left (e + f x \right )} - 1\right )} \left (A + B \sin {\left (e + f x \right )}\right )}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(1/2)/(a+a*sin(f*x+e))**(3/2),x)

[Out]

Integral(sqrt(-c*(sin(e + f*x) - 1))*(A + B*sin(e + f*x))/(a*(sin(e + f*x) + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=\int { \frac {{\left (B \sin \left (f x + e\right ) + A\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*sqrt(-c*sin(f*x + e) + c)/(a*sin(f*x + e) + a)^(3/2), x)

Giac [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.14 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=-\frac {{\left (4 \, B \sqrt {a} \log \left ({\left | \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - \frac {A \sqrt {a} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - B \sqrt {a} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}}\right )} \sqrt {c}}{2 \, a^{2} f \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

-1/2*(4*B*sqrt(a)*log(abs(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) - (A*sqrt(a)*sg
n(sin(-1/4*pi + 1/2*f*x + 1/2*e)) - B*sqrt(a)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)))/cos(-1/4*pi + 1/2*f*x + 1/2
*e)^2)*sqrt(c)/(a^2*f*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=\int \frac {\left (A+B\,\sin \left (e+f\,x\right )\right )\,\sqrt {c-c\,\sin \left (e+f\,x\right )}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(((A + B*sin(e + f*x))*(c - c*sin(e + f*x))^(1/2))/(a + a*sin(e + f*x))^(3/2),x)

[Out]

int(((A + B*sin(e + f*x))*(c - c*sin(e + f*x))^(1/2))/(a + a*sin(e + f*x))^(3/2), x)